-
-
0
-
0
-
0
-
0
-
0由于细胞之间的异质性,不同的细胞对某些药物有不同的反应。尽管使用传统小型化微量滴定板进行药物筛选已经很好地建立起来并且易于执行,但单细胞药物筛选仍然面临一些技术障碍,包括在开放环境中分散液体的不受控制的蒸发。传统的小型化微滴定板只能静态培养细胞,这限制了它们的适用性,因为这种方法无法模拟自然的细胞外微环境。相比之下,微流体装置可以通过连续输注进行3D细胞培养,使其能够模拟体内与细胞生理学相关的微环境
-
0
-
0
-
0
-
0微流控细胞分选芯片介绍 微流控细胞分选芯片是一种利用微流控技术和微纳米加工技术制备的芯片,用于将混合的细胞或微生物精确地分离和分类。该技术可以通过微型通道中的流体控制来实现对细胞的操纵和分离,具有高效、高通量、低成本、低样品消耗等优点。 工作原理 微流控芯片利用流体动力学原理,通过控制微小体积内的液体流动来模拟生物体内的生理环境。通过精确控制样品的流速、方向和停留时间,实现对细胞的选择性培养、分离或反
-
0
-
14
-
0泛素修饰类型和靶蛋白修饰位点如何鉴定泛素修饰类型和靶蛋白的修饰位点? 1. 使用HA-Ub-WT/KO泛素修饰系统检测修饰类型 步骤: HA-Ub-WT和HA-Ub-KO系统:使用HA标记的野生型泛素(HA-Ub-WT)和赖氨酸突变型泛素(HA-Ub-KO,如K6R、K11R、K27R等)载体,与泛素连接酶(E3)和修饰底物共转染细胞。 CoIP-WB检测:通过免疫共沉淀(CoIP)和蛋白质印迹(WB)检测底物的泛素化水平,明确E3连接酶对底物的泛素修饰类型。 小贴士: HA-Ub-KO系统可以帮助排除特定赖氨酸位
-
0
-
0
-
0
-
0一、百萤AF700 NHS 酯 *与 Alexa Fluor 700 NHS 酯的结构相同*参数 Ex(nm) 696 Em(nm) 719 分子量 ~1400 溶 剂 DMSO 存储条件 在-15℃以下保存,避光防潮 反应基团 NHS酯 二、百萤AF700 NHS 酯 *与 Alexa Fluor 700 NHS 酯的结构相同*优势 1.易于结合:高效地将伯胺标记在蛋白质、抗体和胺修饰的寡核苷酸上 2.荧光明亮且稳定:在pH 4-10范围内荧光不受影响且光稳定性好 3.亲水性好:减少聚集,提高信号清晰度,适用于高级成像和活细胞研究 三、百萤AF700 NHS 酯 *与 Alexa Fluor 700 NHS 酯
-
0
-
0蛋白DNA互作组ChIP-Seq原理,要点,优劣势。 ChIP-Seq检测原理: ChIP-Seq检测原理和RIP-Seq类似,不同的是前者利用目的蛋白抗体将相应的DNA-蛋白复合物沉淀下来,然后分离纯化捕获DNA,结合高通量测序技术对目标DNA进行测序分析。 ChIP-Seq服务要点和RIP-Seq类似,精简如下: (1)试验设计:同RIP-Seq。 (2)蛋白表达和细胞量:比RIP-Seq细胞用量要求大,建议不少于10e7(金标准:320g离心沉淀100ul)。 (3)抗体关键质控:同IP-Mass和RIP-Seq。 (4)IP送样建议:细
-
0一、百萤 AF568酸 等同于Alexa Fluor 568acid参数 Ex(nm) 579 Em(nm) 603 分子量 807.74 溶剂 DMSO 存储条件 在-15℃以下保存,避光防潮 荧光颜色 红色 二、百萤 AF568酸 等同于Alexa Fluor 568acid适用范围 主要用于标记抗体、蛋白质和寡合苷酸 三、百萤 AF568酸 等同于Alexa Fluor 568acid概述 AAT Bioquest 生产的XFD 568 酸与AlexaFluor®568酸的分子相同,是一种明亮的红色荧光染料,在pH 4-10范围内荧光不受影响且光稳定性好。适用于多色荧光显微镜、流式细胞术和dSTORM等先进成像技术。
-
0PHLDA2与ALOX12相互作用 一、确定ROS铁死亡系统的相互作用分子 通过SFB标签抗体,进行IP-MS和IP-WB发现PHLDA2与ALOX12互作(图1a、b)。进一步通过内源抗体Co-IP双向验证PHLDA2与ALOX12存在相互作用(图1c-d)。而免疫荧光共定位实验发现PHLDA2和ALOX12能够同时共定位于细胞质(图1e),进一步佐证了PHLDA2-ALOX12复合体的存在。 二、确定PHLDA2和ALOX12互作特异性 PHLDA2属于PH样结构域家族A,包括PHLDA1、PHLDA2和PHLDA3(图1f)。Co-IP实验分析发现,PHLDA1、PHLDA2和PHLDA3中,只有PHL
-
0聚合酶链式反应(PCR)在核酸扩增检测中至关重要,广泛应用于传染病检测、肿瘤筛查和食品安全检测等许多应用;然而,大多数PCR设备的加热和冷却速率效率低下,这大大限制了它们在医院急诊、机场和海关等特殊情况下的应用。科研人员提出了一种温度控制策略即微流控PCR热循环仪,通过在多个温度区之间切换微流控芯片并过度增加温度区和溶液之间的温差,显著提高溶液温度的斜坡率。结果表明,溶液温度的上升速率在一定范围内是温差的线性
-
0
-
0
-
0
-
0
-
0
-
0RIP-Seq检测原理: 细胞内蛋白RNA互作组RIP-seq检测,即免疫沉淀RNA结合测序分析检测。RIP-Seq检测原理和IP-Mass类似,不同的是前者利用目的蛋白抗体将相应的RNA-蛋白复合物(RBP)沉淀下来,然后分离纯化捕获RNA,结合高通量测序技术对目标RNA进行测序分析。 RIP-Seq检测要点: RIP-Seq服务要点和IP-Mass类似,但要求更高,精简如下: (1)试验设计:RIP-Seq强烈建议设置实验组别和生物学重复检测。 (2)蛋白表达和细胞量:比IP-Mass细胞用量要求大,建议不少
-
0CoIP-Mass检测原理: 细胞内蛋白互作组CoIP-Mass检测,即免疫沉淀结合质谱分析检测,是研究细胞内蛋白互作的常规前置技术。 CoIP-Mass检测要点: (1)试验设计:尽量进行试验组别设计和进行生物学重复检测,提高后续验证的阳性率。常规过表达单组(Ab IP vs IgG IP);动态互作组学(实验组vs对照组vs Ig组)。根据目的设计适当的生物学重复。如果后续以IP-Mass数据进行互作组标准分析,则需要3-4组生物学重复;如果后续以寻找关键互作蛋白,进行机制深
-
0circCFL1直接与HDAC1互作 一、初步筛选出与circCFL1的互作蛋白分子HDAC1 为了阐明circCFL1对TNBC影响的潜在分子机制,进行RNA pull down实验,对显著富集的55 kD蛋白进行质谱分析(图1a),发现HDAC1是circCFL1的高潜蛋白(图1b)。分子对接显示circCFL1与HDAC1蛋白存在物理结合(图1c)。 二、确定circCFL1与HDAC1存在互作 FISH和IF检测发现circCFL1和HDAC1在细胞核中共定位(图1d)。RNA pull down-WB实验证实circCFL1和HDAC1相互作用(图1e)。 三、确定circCFL1与HDAC1结合的特定区域 首
-
0circCFL1直接与HDAC1互作 一、初步筛选出与circCFL1的互作蛋白分子HDAC1 为了阐明circCFL1对TNBC影响的潜在分子机制,进行RNA pull down实验,对显著富集的55 kD蛋白进行质谱分析(图1a),发现HDAC1是circCFL1的高潜蛋白(图1b)。分子对接显示circCFL1与HDAC1蛋白存在物理结合(图1c)。 二、确定circCFL1与HDAC1存在互作 FISH和IF检测发现circCFL1和HDAC1在细胞核中共定位(图1d)。RNA pull down-WB实验证实circCFL1和HDAC1相互作用(图1e)。 三、确定circCFL1与HDAC1结合的特定区域 首
-
0
-
0PHLDA2与ALOX12相互作用 一、确定ROS铁死亡系统的相互作用分子 通过SFB标签抗体,进行IP-MS和IP-WB发现PHLDA2与ALOX12互作(图1a、b)。进一步通过内源抗体Co-IP双向验证PHLDA2与ALOX12存在相互作用(图1c-d)。而免疫荧光共定位实验发现PHLDA2和ALOX12能够同时共定位于细胞质(图1e),进一步佐证了PHLDA2-ALOX12复合体的存在。 二、确定PHLDA2和ALOX12互作特异性 PHLDA2属于PH样结构域家族A,包括PHLDA1、PHLDA2和PHLDA3(图1f)。Co-IP实验分析发现,PHLDA1、PHLDA2和PHLDA3中,只有PHL
-
0
-
0
-
0分子互作基础 1.确定ROS铁死亡系统的相互作用分子 通过SFB标签抗体,进行IP-MS和IP-WB发现PHLDA2与ALOX12互作(图1a、b)。进一步通过内源抗体Co-IP双向验证PHLDA2与ALOX12存在相互作用(图1c-d)。而免疫荧光共定位实验发现PHLDA2和ALOX12能够同时共定位于细胞质(图1e),进一步佐证了PHLDA2-ALOX12复合体的存在。 2.确定PHLDA2和ALOX12互作特异性 PHLDA2属于PH样结构域家族A,包括PHLDA1、PHLDA2和PHLDA3(图1f)。Co-IP实验分析发现,PHLDA1、PHLDA2和PHLDA3中,只有PHLDA2与ALOX12相
-
0
-
0
-
0
-
0我的身体里吃入了大量能控制人体类似芯片的东西 芯片在身体里可以被操纵跳身体就会很痛 怎么办
-
0
-
0泛素修饰类型的作用:K6:与DNA损伤、线粒体稳态等相关。参与调控细胞周期、蛋白质定位和信号传导等过程。 K11:参与内质网介导的降解途径和细胞周期进程的控制。在细胞分裂和转录因子活性调控中发挥重要作用。 K27:在固有免疫、蛋白稳态和DNA损伤修复等方面具有功能。参与线粒体自噬和信号转导等过程。 K29:调控蛋白质的溶酶体降解,与蛋白酶体应激反应相关。参与调控蛋白质的细胞定位和信号传导。 K33:与先天免疫有关,可能在免疫细胞
-
0
-
0
-
0